Skip to content
adatum
  • Home
  •  About adatum
  •  Learn Azure Bicep
  •  SCOM Web API
Azure

Jumpstart your Azure Monitor journey

  • 08/04/202007/01/2025
  • by Martin Ehrnst

For the past decade, monitoring has been my main responsibility. I have had my hands on many of the enterprise monitoring systems out there, but System Center Operations Manager (SCOM) is where most of my working hours were spent. Now, I spend my time in Azure and since monitoring is relevant in public cloud as well. Azure Monitor is now my primary tool for my applications (and servers).

I know that starting off with an entirely new monitoring platform can be challenging, at best. Instead of figuring out all bits and pieces by yourself, I will introduce you to the key features of Azure Monitor, such as visualization and alerting. I will also briefly touch on the more advanced capabilities like custom log injection using Azure Monitors REST API.

After reading this you should have the basic knowledge on how to monitor your applications and servers using Azure Monitor. Details related to the various topics can be found in the official Azure Monitor documentation

Azure Monitor Martin Ehrnst

Azure Monitor Logs

Logs in Azure Monitor is backed by a Log Analytics workspace. To fully utilize Azure Monitor, a Log Analytics workspace is mandatory.

With Logs, you can extend your Azure Activity Log retention, collect and analyze Server Event Logs (both built-in and custom logs are supported). Azure Monitor Logs or Log Analytics is Microsoft equivalent to for example Splunk.

To perform analysis and query data, you use a language called KQL.

Guest blog for Nigel Frank

This is a piece written for Nigel Frank Internationals Azure Blog. Click here to continue reading this post on how to jumpstart your Azure Monitor jurney

Share this:

  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on X (Opens in new window) X
  • Click to share on Reddit (Opens in new window) Reddit
Automation

Multi subscription deployment with DevOps and Azure Lighthouse

  • 11/03/202007/01/2025
  • by Martin Ehrnst

Companies today are rapidly adopting new technology. Adding more pressure on the companies IT-department or the service provider. No matter where the workload runs, governance, security, and deployments are fundamental parts.
Azure Lighthouse came last year, and while it solves a lot of our trouble. Multi subscription deployments aren’t one of them – but it sure makes it more possible!

Azure deployments with Azure DevOps

One of the things that make service providers great at what they do is standardization. For example; making sure all subscriptions (customers in many cases) have the same set of baseline Azure policies.

Azure DevOps has multiple ways to deploy resources in Azure or other places. How do we deploy the same Azure template to multiple subscriptions using the same pipeline? In our case, I solved this with some existing features, forward-thinking and PowerShell magic.

Azure DevOps service connection with Azure Lighthouse

Multi subscription deployments with Azure DevOps is not a built-in feature. With Azure Lighthouse it became a little bit easier but will require some work.

First, you must set up a service connection and allow that to access one of your internal subscriptions. In Azure DevOps service connections are bound to one subscription.

For this service connection to be capable of multi subscription deployments, it will need access to your customer’s subscriptions. This can be solved through delegated resource management and Azure Lighthouse.
In my case, I had a group with contributor access. And I could add the SPN to that group. Otherwise, you will have to update your current delegation.

Repository structure

Everything you need, including a YAML pipeline is available on GitHub, but I will walk you through how and why I set it up.

I needed to create not only a solution to deploy one resource to multiple subscriptions. I also needed to deploy multiple ARM templates.

For this purpose, I had the option to create one large PowerShell script with complex logic. Or, I could reuse the same script for every deployment. I chose option two. My code repository now looks something like this

  • ARM-Templates (folder)
    • storage-Account (folder)
      • azuredeploy.json
      • azuredeploy.parameters.json
      • deploy.ps1
    • another-resource (folder)
      • azuredeploy.json
      • azuredeploy.parameters.json
      • deploy.ps1
    • […]
  • azure-pipelines.yaml

PowerShell magic?

In regular deployments, we can use built-in tasks in the pipeline and deploy directly. For multi subscription deployment, PowerShell is my weapon of choice.

To people with PowerShell competency. The script used is fairly simple;

  1. Connect to Azure
  2. Retrieve the subscriptions
  3. Iterate and deploy the ARM template(s) to each customer subscriptions.

Below is a short example. Showing the core in my deployment script (deploy.ps1)

$deploymentName = "Multi-sub-deployment"
$deploymentLocation = "westeurope"
$templateFile = ".ARM-Templatesstorage-Accountazuredeploy.json"
$templateParameterFile = ".ARM-Templatesstorage-Accountazuredeploy.parameters.json"

# getting all subscriptions
$subscriptions = Get-AzSubscription | Where-Object { $_.Id -NotIn $excludedSubs }

foreach ($subscription in $subscriptions) {
        
    # set context to the current subscription
    $subscriptionId = $subscription.id
    Set-AzContext -SubscriptionId $subscriptionId

    # deploy the arm template
    New-AzSubscriptionDeployment -Name $deploymentName -Location $deploymentLocation `
        -TemplateParameterFile $templateParameterFile -TemplateFile $templateFile
}

Multi subscription deployment, build pipeline

Although my repository contains a YAML pipeline, you don’t have to use it. To be honest, I’m not sure I like them. I used too much time trying to wrap my head around it. And at this point, it seems unfinished from the Azure DevOps side. Therefore, I will show you how to set up your pipeline to support multi subscription deployments using the classic method.

azure pipeline template selector

kick off with the classic mode, and chose the empty job on the template page. We could probably discuss if we even need multiple pipelines for this. But it doesn’t hurt, and it will be easier for the next person if we do this by the book.

For the build pipeline, I am renaming my job to something meaningful, and add one single task. Publish pipeline artifact

After you save and run the build. An artifact should be produced. The result should look something like this

Azure pipeline artifact

Multi subscription deployment, release pipeline

After a successful build (or in this case copy files), it is time to create our release pipeline. When using YAML, the two pipelines are combined. Not at all confusing for someone like me, who not that many months ago, didn’t know anything at all about this stuff.

Once again, I start off with an empty job, before I add my artifact from my build pipeline. I also renamed the first stage to “resource deployment”.

Now it’s the matter of adding tasks to our job, and it’s here you will need the service connection that you added earlier. The task we are working with is the Azure PowerShell task. And for multi subscription deployment, it is the only task you’ll need. Below is my task configuration

For some reason, it takes a few tries before pipelines want to work. It might be because of lat hours, or a law created by some guy named Murphy. Anyway, once it’s up and running you shole be able to see something similar to my output below;

2020-03-10T17:13:12.2503976Z ## Az module initialization Complete
2020-03-10T17:13:12.2517976Z ## Beginning Script Execution
2020-03-10T17:13:12.2532801Z Generating script.
2020-03-10T17:13:12.3293381Z ========================== Starting Command Output ===========================
2020-03-10T17:13:12.3416275Z ##[command]"C:Program FilesPowerShell6pwsh.exe" -NoLogo -NoProfile -NonInteractive -ExecutionPolicy Unrestricted -Command ". 'd:a_temp112fe6df-8ee0-4a10-b53e-5694a4d34b0f.ps1'"
2020-03-10T17:13:25.0914923Z No subscription specified. Deploying to all subscriptions
2020-03-10T17:13:25.2151812Z 
2020-03-10T17:13:25.2211374Z Name                                     Account             SubscriptionName    Environment         TenantId
2020-03-10T17:13:25.2292766Z ----                                     -------             ----------------    -----------         --------
2020-03-10T17:13:25.2300155Z MVP-Sponsorship (6dca9329-fb22-46cb-826…  MVP-Sponsorship     AzureCloud          22046864-98a9-4a9…
2020-03-10T17:14:01.7100820Z 
2020-03-10T17:14:01.7151741Z Id                      : /subscriptions/6dca9329-fb22-46cb-826c-/providers/Microsoft.Resources/deployments
2020-03-10T17:14:01.7152947Z                           /Multi-sub-deployment
2020-03-10T17:14:01.7154721Z Location                : westeurope
2020-03-10T17:14:01.7159918Z ManagementGroupId       : 
2020-03-10T17:14:01.7161790Z ResourceGroupName       : 
2020-03-10T17:14:01.7162557Z OnErrorDeployment       : 
2020-03-10T17:14:01.7163149Z DeploymentName          : Multi-sub-deployment
2020-03-10T17:14:01.7163805Z CorrelationId           : d49c10f8-0260-49d5-aa8d-08a41591d1a7
2020-03-10T17:14:01.7164463Z ProvisioningState       : Succeeded
2020-03-10T17:14:01.7165107Z Timestamp               : 3/10/2020 5:14:00 PM
2020-03-10T17:14:01.7166059Z Mode                    : Incremental
2020-03-10T17:14:01.7166610Z TemplateLink            : 
2020-03-10T17:14:01.7167216Z TemplateLinkString      : 
2020-03-10T17:14:01.7167793Z DeploymentDebugLogLevel : 
2020-03-10T17:14:01.7168836Z Parameters              : {[rgName, Microsoft.Azure.Commands.ResourceManager.Cmdlets.SdkModels.DeploymentVariable], 
2020-03-10T17:14:01.7169800Z                           [location, Microsoft.Azure.Commands.ResourceManager.Cmdlets.SdkModels.DeploymentVariable], 
2020-03-10T17:14:01.7173723Z                           [storagePrefix, 
2020-03-10T17:14:01.7174379Z                           Microsoft.Azure.Commands.ResourceManager.Cmdlets.SdkModels.DeploymentVariable]}
2020-03-10T17:14:01.7175014Z ParametersString        : 
2020-03-10T17:14:01.7177870Z                           Name             Type                       Value     
2020-03-10T17:14:01.7178513Z                           ===============  =========================  ==========
2020-03-10T17:14:01.7179228Z                           rgName           String                     adatum    
2020-03-10T17:14:01.7179831Z                           location         String                     westeurope
2020-03-10T17:14:01.7180452Z                           storagePrefix    String                     str       
2020-03-10T17:14:01.7181006Z                           
2020-03-10T17:14:01.7181454Z Outputs                 : {}
2020-03-10T17:14:01.7181916Z OutputsString           : 
2020-03-10T17:14:01.7182291Z 
2020-03-10T17:14:02.0220641Z 
2020-03-10T17:14:02.0937716Z ##[command]Disconnect-AzAccount -Scope Process -ErrorAction Stop

If you look at the output, you can see that the script set’s context to a subscription, and that there is no subscription specified in the pipeline.

Multi subscription deployment summary

Multi subscription deployments with Azure DevOps is not available as a default. But with a little bit of PowerShell trickery, you got a great solution. For service providers and large enterprises, Azure Lighthouse is now a preferred way to manage resources.

By granting a service principal access to your customer subscriptions (or internal for that matter), and use this SPN as a service connection in your Azure Pipeline. You can use PowerShell to iterate through each subscription and deploy the resources needed.

The beauty with this is that it will work regardless of where your DevOps environment is hosted. You can have separate tenants for Lighthouse, Azure DevOps and workplace.

This post described the following, which is required for multi subscription deployment to work.

  • Created an SPN in the management tenant
  • Authorized the service principal through Azure Lighthouse
  • Created a repository and added our scripts and templates to it
  • Created pipelines and used the SPN as our service connection
  • Used PowerShell and the built-in task to iterate through each subscription and perform deployments.

Share this:

  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on X (Opens in new window) X
  • Click to share on Reddit (Opens in new window) Reddit
Azure

Working with Azure Monitor Rest API

  • 29/02/202007/01/2025
  • by Martin Ehrnst

It might be an edge case, or you are creating your own integration. But chances are, after fiddling around with Azure Monitor, you encounter a situation where you would have work with its API.
Personally, I have numerous situations over the last years, that required me to integrate directly with Azure Management APIs

In this blog post, I will help you get started using the APIs, hopefully making it less intimidating. All code examples will use PowerShell.

Create SPN and assign it to your subscription RBAC

I am using a service principal in order to connect programmatically to Azure. SPNs are created in Azure Active Directory as Application Registrations. You can choose whether you want to do this via the portal, or by using PowerShell.

After creating (or using an existing SPN) grant the application appropriate access. For simplicity, I am using contributor to my subscription. That might be best for you as well, but one should always use the least privileged assignment needed.

Consider the above as a prerequisite for you to continue.

At this point, you should have an application registration, a secret, and a role assignment on your subscription. We can now use this to acquire an access token and connect to Azure Monitor’s REST API.

Connect to Azure Monitor API using PowerShell

Azure Monitor APIs are a part of the Azure Management APIs. I will, therefore, use these names interchangeably. Also keep in mind, that all other APIs under Azure Management will follow the same methods I demonstrate for Azure Monitor.

To query data we need to authenticate. In the example below, I am using client credentials to acquire the access token. Microsoft’s official example is using the ADAL method, connecting with your identity. I have never had the use for this, as I am usually writing integrations service-to-service.
If you are creating an interactive portal and want to leverage the user’s authorization, ADAL (or MSAL) are probably better.


Retrieve Azure Monitor alert rules

I have no idea why you are exploring Azure Monitors API. Providing an integration solution is therefore not possible. But my gut feeling is that alerts and metrics is a good place to start.

When working with alerts, we need to work with multiple endpoints. Depending on what you are working on, these are the most common;

  • Alert rules*
  • Alert incidents
  • Metric Alerts
  • Metric Alert status

We can start with one of the basics, retrieve the current configured alert rules. To do that, we need to know what kind it is. The classic alert rules (old type) use a single endpoint, while the current use it’s own.

Below I have included three endpoints and a screenshot. As you can see, all the information that you expect is to be found in the output. From here we can start to explore the alert rule by accessing its properties.

Azure monitor rest api metric alert rule output

Get resource metrics from Azure Monitors API

Metrics is another fundamental in monitoring. When we work with the API in the context of metrics. You can explore the available metrics for each resource type by using the Metric Definitions endpoint.

Actual metrics values require a bit more when it comes to the actual query. The official documentation describes everything pretty well, but I have provided an example for a VM below. This example shows the basics of how you get data from one metric and one VM. You can add multiple metrics to one query, and do additional filtering using the OData filter.


Manage alerts, updating status, etc.

Viewing configured alert rules, looking at disk metrics for a VM. What about alerts. The actual things that send you emails- can we work with them using this API? Yes, you can.

Like I said. Providing an integration solution in this blog post isn’t possible. but most integrations I have seen with Azure Monitor or other monitoring solutions have had some kind of functionality to handle active alerts. Personally, I have created one for SquaredUp earlier, where we could acknowledge alerts in Azure Monitor as well as our on-premises SCOM installation.

Before we wrap up. Let’s take a look at how we can interact with an active alert. I have configured a very naggy alert rule, creating a lot of noise, and I want to change the status of those alerts. Armed with PowerShell and the alerts management endpoints everything is possible.

Summary

This blog post has covered the basics regarding the Azure Monitor REST API and PowerShell. With the examples above and the official documentation, you can start creating your own solutions and integrations.

While we have only covered how to get data out of Azure Monitor, you should know it’s also possible to inject data. By using the HTTP data collector API and the Metric store possibilities are ‘endless’.

Integrations ideas

  • Alert remediation/handling from a ticketing system
  • Dashboarding with third-party or custom web integration
  • Teams/Slack/IM connector
  • Custom application metrics or logs

In my examples, I have purposely not included how new alert rules are created, as I believe this should be done through ARM. If that is your use case, you should know it is possible and fully supported.

This blog post was originally published in November 2017. Rewritten for Azure Spring Clean 2020 and to reflect changes to Azure Monitor API

Share this:

  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on X (Opens in new window) X
  • Click to share on Reddit (Opens in new window) Reddit

Posts pagination

1 … 5 6 7 8 9 … 19

Popular blog posts

  • SCOM Alerts to Microsoft Teams and Mattermost
  • How to move Azure blobs up the path
  • Azure Application registrations, Enterprise Apps, and managed identities
  • Serverless application with PowerShell: Azure Functions
  • Export overrides to CSV, XML & HTML

Categories

Automation Azure Azure Active Directory Azure Bicep Azure DevOps Azure Functions Azure Lighthouse Azure Logic Apps Azure Monitor Azure Policy Community Conferences CSP Monitoring DevOps GitHub Guest blogs Infrastructure As Code Kubernetes Microsoft CSP MPAuthoring OMS Operations Manager Podcast Powershell Uncategorised Windows Admin Center Windows Server

Follow Martin Ehrnst

  • X
  • LinkedIn

RSS feed RSS - Posts

RSS feed RSS - Comments

Microsoft Azure MVP

Martin Ehrnst Microsoft Azure MVP
Adatum.no use cookies to ensure that we give you the best experience on our website. If you continue to use this site we will assume that you are happy with it. Cookie Policy
Theme by Colorlib Powered by WordPress